On Generalized Gaussian Quadrature Rules for Singular and Nearly Singular Integrals
نویسندگان
چکیده
We construct and analyze generalized Gaussian quadrature rules for integrands with endpoint singularities or near endpoint singularities. The rules have quadrature points inside the interval of integration and the weights are all strictly positive. Such rules date back to the study of Chebyshev sets, but their use in applications has only recently been appreciated. We provide error estimates and we show that the convergence rate is unaffected by the singularity of the integrand. We characterize the quadrature rules in terms of two families of functions that share many properties with orthogonal polynomials, but that are orthogonal with respect to a discrete scalar product that in most cases is not known a priori.
منابع مشابه
Generalized Gaussian Quadrature Rules in Enriched Finite Element Methods
In this paper, we present new Gaussian integration schemes for the efficient and accurate evaluation of weak form integrals that arise in enriched finite element methods. For discontinuous functions we present an algorithm for the construction of Gauss-like quadrature rules over arbitrarily-shaped elements without partitioning. In case of singular integrands, we introduce a new polar transforma...
متن کاملQuadrature by expansion: A new method for the evaluation of layer potentials
Integral equation methods for the solution of partial differential equations, when coupled with suitable fast algorithms, yield geometrically flexible, asymptotically optimal and well-conditioned schemes in either interior or exterior domains. The practical application of these methods, however, requires the accurate evaluation of boundary integrals with singular, weakly singular or nearly sing...
متن کاملGeneralized Gaussian Quadrature Rules for Discontinuities and Crack Singularities in the Extended Finite Element Method
New Gaussian integration schemes are presented for the efficient and accurate evaluation of weak form integrals in the extended finite element method. For discontinuous functions, we construct Gauss-like quadrature rules over arbitrarily-shaped elements in two dimensions without the need for partitioning the finite element. A point elimination algorithm is used in the construction of the quadra...
متن کاملEfficient quadrature rules for a class of cordial Volterra integral equations: A comparative study
A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations. The equations of this class appear in heat conduction problems with mixed boundary conditions. The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes. A comparative stud...
متن کاملA new method for the numerical evaluation of nearly singular integrals on triangular elements in the 3D boundary element method
A new method (the sinh–sigmoidal method) is proposed for the numerical evaluation of both nearly weakly and nearly strongly singular integrals on triangular boundary elements. These integrals arise in the 3D boundary element method when the source point is very close to the element of integration. The new polar coordinate-based method introduces a sinh transformation in the radial direction and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2008